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Knowns and Desires

Reducing string theory to four dimensions 
requires a choice of compactification.

The space of string compactifications is still 
largely mysterious. 

We need more powerful approaches to 
understand the interplay between cosmology, 
particle physics and Planck scale SUSY.  
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Need to specify a metric and a choice of 
flux/gauge bundle. 

In every corner of the diagram, one finds 
the same qualitative physics: a landscape of 
SUSY vacua, potential large warping, etc.

Only in the heterotic string is the required 
data purely NS with no RR fields. For models 
with RR fields, not much is known beyond 
the SUGRA approximation. 
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We will focus on N=1 SUSY heterotic string vacua.

Spacetime SUSY => (0,2) worldsheet SUSY. 

In conventional models, this requires specifying a complex
manifold,

and a choice of H-flux and gauge-bundle:

The primary constraint is the Bianchi identity which has a 
gravitational correction that plays the role of an 
orientifold source:

Jab̄ = igab̄

gab̄Fab̄H = i(@ � @̄)J,

dH = ↵0

4 {tr(R ^R)(!+)� tr(F ^ F )}
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If H=0 at tree-level then the geometry is Ricci flat:

These spaces are Calabi-Yau and the most commonly 
studied compactifications. 

They are likely to be a very special subset of generic 
heterotic compactifications which will typically have 
torsion: 

Generic compactifications should have few if any moduli 
other than the string dilaton. 

Rµ⌫ = 0

Rµ⌫ ⇠ Hµ⇢�H
⇢�
⌫ + . . .
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What we want: a linear framework analogous to Witten’s 
linear sigma model that allows us to build analogues of the 
quintic Calabi-Yau.

P
i z

5
i = 0 ⇢ P4

We will need to discover new geometries since very few 
examples of torsional spaces are known.
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Non-Compact Models
Basics: we will restrict to (0,2) theories built from chiral 
superfields 

in a superspace with coordinates: (✓+, ✓̄+).

D̄+�i = 0.

Let’s recall that the simplest (2,2) non-linear sigma models 
are defined by a choice of Kahler potential: 

 L =

Z
d4✓K(�, �̄)
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For a (0,2) theory, the analogous data is a collection of
one-forms:

L ⇠
Z

d2✓
�
Ki(�, �̄)@��

i + c.c.
�

⇠ �gi|̄ @↵�
i@↵�|̄ + bi|̄ ✏

↵�@↵�
i@��

|̄ + . . . .

The metric is generally non-Kahler.

gi|̄ = @(|̄Ki), bi|̄ = @[|̄Ki]
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Linear models have canonical kinetic terms. Interactions
are generated by gauging and introducing 
superpotentials. 

To build a gauge theory, we introduce a chiral fermionic 
field strength

with couplings: 

⌥ ⇠ �+ ✓+ (D � iF01)

L⌥ ⇠ 1

e2

Z
d2✓⌥̄⌥ ⇠ 1

e2

✓
1

2
F 2
01 + i�̄@+�+

1

2
D2

◆
,

LFI ⇠ t

4

Z
d✓+⌥+ c.c. ⇠ �rD +

✓

2⇡
F01.
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Taking          , we can neglect the gauge kinetic terms

with a potential energy:

The moduli space is a toric variety:

realized as a symplectic quotient of      by U(1) with 
moment map D.

     

e ! 1

L
bosonic

= �|D
µ

�i|2 + ✓

2⇡F01 � V (�i)

V = 1
2e2D

2, D = �e2
�P

qi|�i|2 � r
�

Cd

D�1(0)/U(1)
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In the IR limit, we can solve for the gauge field:

This gives the space-time B-field:

If we can make     effectively vary, we can generate
a non-zero H=dB. 

Aµ = i
2

P
qi(�̄i@µ�

i��i@µ�̄
i)P

q2i |�i|2 .

B = ✓
2⇡dA = ✏µ⌫Bi|̄@µ�i@⌫�|̄

✓
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Modify the FI term which is a superpotential coupling:

This has the following effect:

We generate a metric and H-field but these models are 
always non-compact. 

LFI ⇠ t

4

Z
d✓+f(�)⌥+ c.c.

Gauge invariant

✓
2⇡ ! ✓

2⇡ + Im(f(�))

V (�) ! e2

2

�P
qi|�i|2 +Re(f)� r

�2
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Example: Conifold with Torsion 

A single U(1) gauge group with charged matter:

Take a quadratic                . Higher powers are possible 
but the dilaton appears to blow up. 

f ⇠ fim�i�m

|�i|2 � |�m|2 = r

�i(i = 1, 2) qi = +1, �m(m = 1, 2) qa = �1

�i = �̄i, �ı̄ = �i, �̃i = fim�m, �̃ı̄ = f̄im�̄m.
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This leads to a B-field and metric which depend on a 
tunable deformation:

Gi|̄ = �i|̄ �
�i�|̄ � e�i

e�|̄P
|�|2 ,

Bi|̄ = ��i
e�|̄ � �|̄

e�iP
|�|2 , . . .

This is a beautiful collection of non-compact 
torsional spaces.
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Compact Models
The previous approach never involves quantized fluxes
yet we expect flux quantization to play a central role:

How do we build compact models?

1
2⇡↵0

R
H 2 2⇡Z
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Let’s draw an analogy with N=1 D=4 gauge theory:

R
d

2
xd✓

+ ⌥ ,
R
d

4
x d

2
✓W

↵
W↵

Im
R
d

4
x d

2
✓ (⌧W↵

W↵) ! 1
4g2F

2 + ✓
32⇡2F ^ F

⌧ = 8⇡
g2 + i✓

Renormalization is tightly controlled by holomorphy,

⌧(µ) = b
2⇡i log(⇤/µ) + f(⇤b,�)

⇤b ! e2⇡i⇤b, ⌧ ⇠ ⌧ + 1
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We will allow log interactions for    in the fundamental 
theory.

Note that no scale is need to define the log in two 
dimensions.

⌥

LFI = � i
8⇡

R
d✓+ Na

i log

�
�

i
�
⌥

a
+ c.c.

Integers Different gauge factors

We could also add additional single valued functions but 
let’s focus on the log which has all the novelty.
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This model is not classically gauge-invariant! Under a    
gauge transformation:

The antisymmetric part of this anomaly (in a,b) can be 
canceled by the classical coupling

where       is antisymmetric. This coupling shifts by

 

�LFI =
⇣

Na
i Qb

i
8⇡

R
d✓+ ⇤b⌥a + c.c.

⌘
.

U(1)b

L2 = 1
4⇡

R
d2✓+ T abAaV b

�

�L2 =
�
� 1

8⇡T
ab

R
d✓+ ⇤a⌥b + c.c.

�
.

T ab

�i ! eiQ
b
i⇤

b
�i
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On the other hand, the gauge theory is generally anomalous 
with a symmetric one-loop anomaly:

Choosing

gives a quantum gauge invariant theory. These are 
intrinsically quantum models.

Aab =
P

i Q
a
iQ

b
i �

P
↵ Qa

↵Q
b
�

Left-movers (NS5-branes & bundle)Right-movers (curvature)

�L =
⇣

Aab

8⇡

R
d✓+ ⇤a⌥b + c.c.

⌘
.

T ab = Q[a
i N

b]
i ,

P
i Q

(a
i N b)

i +Aab = 0.
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Let us see what is happening. Intuitively, the very large 
number of ways of canceling the gauge anomaly 
correspond to many geometries, fluxes and choices of 
gauge bundle that satisfy the Bianchi identity:

This is a natural generalization of toric geometry and 
familiar toric spaces like projective spaces. 

Let’s get a feel for the structures that arise. 

dH = ↵0

4 {tr(R ^R)(!+)� tr(F ^ F )}
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The physical potentials are modified by the log interactions.

Take the case of one U(1) initially:

If there are no log interactions, this would give a compact 
sphere. Quotienting by U(1) would then give weighted 
projective space.

If          then the space is still compact! The sign of the 
contribution to the gauge anomaly makes this appear “NS5-
brane” like.  

If some          then the space is non-compact and the 
anomaly contribution appears “anti-brane” like.

P
i Qi|�i|2 +Ni log |�i| = r, Qi > 0

Ni < 0

Ni > 0
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This situation is more involved with multiple U(1) factors.

Let’s examine one case with U(1) X U(1):

The first block has length n and the second length m with 
 

Add left-moving fermions with charges:

Qa
i =

✓
1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1

◆

m � n.

Q↵
m =

✓
0 0 . . . 0 0 0 . . . 0
1 1 . . . 1 1 1 . . . 1

◆
.

N2
i = �N1

i = 1 for i = 1, . . . , 2n and 0 otherwise.
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Aab =
X

i

Qa
iQ

b
i �Q↵

mQ�
m =

✓
n 0
0 m

◆
�

✓
0 0
0 n+m

◆

=

✓
n 0
0 �n

◆

Na
i Q

b
i =

✓
�n �n
n n

◆

So the anomaly can be canceled using AV couplings and 
not all N factors are negative. This is a mix of brane 
and anti-branes in the geometry.
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Lastly, we can add superpotentials to carve out surfaces
in these generalizations of toric varietes. Introduce a 
left-moving charged fermionic superfield:

The superpotential couplings

give a bosonic potential

For a suitable choice of fields and charges, these give 
conformal models generalizing Calabi-Yau spaces. 

D̄+� =
p
2E(�).

LJ = � 1p
2

R
d✓+ � · J(�) + c.c.

V = |E|2 + |J |2.
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Summary

There appear to be an enormous number of 
quantum consistent gauge theories.

These theories provide a linear framework 
for constructing and studying flux vacua.

The exploration has just begun!

28


